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Abstract
We investigated the effect of electron doping on the phonon dispersion and electron–phonon
coupling of a small diameter (3, 3) carbon nanotube using first principles density functional
perturbation theory. Electron doping increases the number of nesting features in the electronic
band structure, which is reflected in a wealth of phonon anomalies. We found that the overall
electron–phonon coupling is substantially enhanced with respect to the pristine tube, which
improves superconductivity. At the same time, the intrinsic Peierls instability remains similar,
but the Peierls temperature still remains larger than the superconducting transition temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern ab initio methods have opened the way to study
geometric structure, band structure, lattice dynamics, and
even electron–phonon interactions for complex systems in
great detail. Today it is possible to investigate the influence
of structural changes, doping with different kinds of atom,
and external fields on electronic and phononic properties
without relying on experimental input. This allows us
to elucidate the role of individual components in multi-
component systems with the option to develop materials with
special functionalities. One field in which these features
are of great importance is the area of carbon nanotubes [1],
which have attracted a lot of attention from scientists and
engineers. One key reason for their importance for both
science and technology is the small diameter of these tubes,
which is typically of the order of a nanometer for single wall
carbon nanotubes (SWNTs). A small diameter implies that a
nanotube is an extremely sharp needle, and hence an excellent
field emitter. It is also the narrowest conducting wire, and
can transport electrons in a ballistic manner. These desirable
properties depend on the good conductivity of the nanotubes.
However, the phenomenon of Peierls transition dictates that a
truly one dimensional (1D) conductor will spontaneously open
a gap at T = 0 K due to strong electron–phonon interaction,
which is a consequence of the diverging susceptibility at
1D. Since real systems are never truly 1D, there is a finite

Peierls transition temperature TD below which the tubes
undergo a lattice distortion and become semiconductors. For
temperatures higher than TD, the electron–phonon coupling
effect will manifest as a dip in the phonon dispersion,
which is the Kohn anomaly. As the temperature is lowered
towards TD, the phonon frequency at the Kohn anomaly will
decrease continuously towards zero frequency and the mode
will eventually become ‘soft’, signaling a transition to a lattice-
distorted structure with a lower energy, and the equilibrium
atomic coordinates in the distorted state will be given by
higher-order terms of the Hamiltonian. The phenomenon of
Peierls transition and soft phonons is thus of great importance
for the physical properties of an extremely narrow conductor
that approaches the limit of a 1D system.

For SWNTs, the smallest diameter tubes that can be made
in a controllable manner and in a substantial quantity are
probably the 0.4 nm diameter tubes that are fabricated using a
zeolite template method [2]. It is difficult to produce nanotubes
of such a small diameter, since the ultra-small diameter implies
a large curvature and strain and these small diameter tubes
are not favorable in energy. However, recent advances in
fabrication techniques enable fabrication of these tubes inside
the confined channels of zeolite AlPO4-5 single crystals, and
inside the zeolite channels only SWNTs of 0.4 nm can form.
There are three types of tube ((3, 3), (4, 2) and (5, 0)) of
approximately 0.4 nm in diameter, and they are all found inside
the zeolite channels. The (3, 3) and (5, 0) tubes are metallic
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according to standard band structure calculations [3, 4], and
these ultra-small tubes are as close to a 1D conductor that we
can get and are thus interesting systems to study electron–
phonon (el–ph) interactions. There have already been very
careful calculations on lattice dynamics and el–ph interactions
for these tubes, and for the (3, 3) tube it was found that
a phonon branch becomes soft at q = 2kF at about room
temperature [5, 6]. In the present paper, we examine the lattice
dynamics and el–ph interactions when the (3, 3) tube is doped
with electrons. We will see that electron doping shifts the
Fermi level to a higher energy and the changes in the phonon
dispersion and el–ph interactions are substantial.

Superconducting behavior has been reported [7] in these
ultra-small nanotubes embedded in zeolite hosts. The origin
of the superconductivity is still under investigation. As
the superconductivity and Peierls transition both derive from
the electron–phonon mechanism, they are competing against
each other. There is evidence from previous studies that
the strong curvature of graphitic nanostructures, including
small diameter nanotubes, can enhance electron–phonon
interactions, giving the possibility of superconductivity in a
pure carbon system [8]. However, a smaller radius also implies
a higher Peierls temperature TD and therefore it is not clear
which phenomenon will prevail. For both (5, 0) and (3, 3)
nanotubes, first principles density functional calculations for
isolated tubes found that TD should be significantly higher than
the reported Tc of about 15 K [5, 6]. For isolated pristine
ultra-small radius tubes, Peierls instability should pre-empt
superconductivity. We note that the theory papers consider an
array of tubes with tube–tube distance large enough so that the
results correspond to truly quasi-1D non-interacting systems,
while in the experiment the tubes are always residing inside the
zeolite channels. It is possible that the lateral coupling with the
host matrix reduces the 1D character of the system and thus
suppresses the Peierls instability. In addition, the system is
chemically complex and there will be some electron transfer
between the tubes and the host and other impurities, and thus
the situation of the experiment corresponds to a doped tube,
rather than a pristine tube.

In this paper, we will investigate whether doping the
(3, 3) nanotube with electrons can promote superconductivity.
We are motivated by the following considerations. It
is known that graphite intercalated compounds and alkali
intercalated C60 have superconducting phases [9], and the
superconductivity comes from el–ph interaction. It is thus
tempting to investigate whether electron doped tubes can be
superconducting. In addition, previous calculations [10] found
that adding excess electrons to the (3, 3) tube can increase
the electronic density of states, which can potentially enhance
Tc. Electron doping can be achieved by intercalating Li to the
nanotube zeolite complex. The intercalated Li will fill up the
space between the tubes and the host. The intercalation will
most probably reduce the 1D character and suppress the Peierls
transition much more efficiently. This points to the possibility
that Li intercalated nanotube–zeolite complex should exhibit
superconductivity at a higher temperature than the pristine
nanotube–zeolite complex.

We will see that the results of the present calculation show
that upon electron doping the TD remains more or less the same

as for an isolated tube (although the details at the microscopic
level are rather different), but the Tc is enhanced significantly.

2. Method of calculation

In this paper, we employ the density functional perturbation
theory (DFPT) [11] to study the lattice dynamics and electron–
phonon interaction of (3, 3) nanotubes in the presence of elec-
tron doping. Our DFPT scheme is implemented in a ‘mixed-
basis’ pseudopotential code [12, 13], which uses both plane
waves and local orbitals to expand the electronic wavefunc-
tion and norm-conserving pseudopotentials to describe the
electron–core interaction. The plane waves cut-off is set at
20 Ryd, augmented by localized 2s-and 2p-like functions. The
mixed-basis DFPT code has been applied successfully to de-
scribe the phonon dispersion, electron–phonon coupling and
superconductivity properties of many systems.

The DFPT has the advantage that it gives the phonon
dispersion at arbitrary phonon wavevectors. In contrast,
calculating phonon frequencies by extracting force constants
from supercell calculations is limited to phonons with
wavelengths that are compatible with the supercell. The DFPT
is the method of choice for studying the Peierls instability since
phonon anomalies can occur at phonon wavevectors that may
be incommensurate with the lattice.

Alternative methods, such as the tight-binding method [14]
and zone-folding schemes [15], are less computationally de-
manding. These methods are very useful for nano-graphitic
structures in general and for carbon nanotubes with diameters
larger than one nanometer. However, for the 0.4 nm diame-
ter nanotubes we are studying, the curvature effect is signifi-
cant and that changes the band structure predicted from zone-
folding. For example, the Fermi wavevector (kF) is pinned at
2/3 �X in the zone-folding scheme for any member of the (n,
n) tube family, but the curvature effect actually pushes the kF

closer to the zone center, so that kF = 0.57 �X for the pristine
(3, 3) tube. The slope of the bands also changes near kF. As
we expect a nesting q = 2kF for the undoped tube, the curva-
ture effect can have a significant effect on the phonon anoma-
lies. Another complexity is that we are considering tubes that
are doped with extra electrons. As the curvature effect also
changes the slope of the bands from those of zone-folded re-
sults, electron doping will also introduce another level of un-
known error if we employ zone-folding. Methods such as tight
binding are fast, results are easy to interpret and additional pa-
rameters can be added at will, but strong curvature effects and
electron doping probably will be too demanding for most tight-
binding methods.

The nanotubes are arranged in a hexagonal array, with a
nearest wall-to-wall distance of 10 Å. Such a large distance
between the tubes minimizes inter-tube interactions, so that
our results are relevant for describing an isolated tube. We
use Gaussian broadening near the Fermi level. For structural
relaxations, we used a Gaussian width of 0.2 eV. A set of
smaller Gaussian widths is used for phonon calculations to
provide various degree of sharpness in sampling the Fermi
surface. For electron–phonon coupling calculations, we
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Table 1. The nesting q-vectors in order of increasing magnitude and the Fermi points connected by them.

Nesting vector k4 − k3 k3 − k2 2k4 2k3 k2 − k1 k2 + k4 k4 − k1 2k2 k1 + k3 2k1

Magnitude (π/a) 0.084 0.100 0.156 0.324 0.338 0.340 0.522 0.524 0.762 0.800

employed a k-point grid of 1024 points along (0, 0, kz) in the
Brillouin zone (BZ).

Electron doping is accomplished by adding one extra
electron to the system, which has 12 carbon atoms in the
primitive unit cell. A uniform neutralizing background is
added to maintain charge neutrality. The advantage of this
approach is that the unit cell remains the same and the
symmetry of the system is preserved, so the computer cost can
be manageable, and it also allows for an easier comparison with
the pristine phonon results.

It is known that graphitic structures, such as graphite and
fullerene crystals, can be intercalated with alkaline metals,
and the electrons from the alkaline metals will be donated to
the carbon. In many cases, the alkaline intercalated systems
become metallic and many of them exhibit superconductivity.
The family of compounds X3C60 (where X is an alkali element)
can reach a rather high superconducting temperature [9], and
the high Tc can be correlated with the high density of states
near EF for these compounds. The change in the band structure
of these materials can frequently be described by a rigid-band
picture near the Fermi level, with extra states near the Fermi
level being filled. The same situation was found for (3, 3)
tubes. The electronic structure of the (3, 3) tube doped with
Li was studied in detail previously [10], and the results showed
that the rigid-band picture is a very good approximation near
the Fermi level at least up to a high Li concentration of 8%. In
other words, the Li donates its electron to the carbon, and the
band structure of Li@(3, 3) near the Fermi level is basically
that of filling up the bands of (3, 3) with extra electrons. Our
electron doping results should be a reasonably good description
for considering the effect of Li and alkali metal doping on the
lattice dynamical properties of carbon nanotubes. Both theory
and experiment found that the nanotube–zeolite complex can
absorb a high atomic percentage of Li [16].

3. Results

3.1. Electronic structure

Before we examine the phonon dispersion, we first take a look
at the electronic band structure of the doped (3, 3) tube, and
compare it with that of the pristine tube. The band structure
of pristine (3, 3) is shown in figure 1(a), and that of electron
doped (3, 3) with a doping of one additional electron per 12 C
atoms is shown in figure 1(b). If we compare figure 1(b) with
the band structure of Li doped (3, 3) with a nominal formula of
C12Li [10], we see that the bands near EF are almost identical.
From figure 1(b), we observe that the Fermi level intersects
the bands at four k points in the irreducible BZ. These four
points are labeled as k1, k2, k3, and k4, respectively. Their
magnitudes are given by k1 = 0.400 π/a, k2 = 0.738 π/a,
k3 = 0.838 π/a, k4 = 0.922 π/a.

For the pristine (3, 3) tube, the Fermi level is pinned at
the crossing of the two π and π∗ bands, one with a positive

Figure 1. The band structure of (a) pristine (3, 3) and (b) doped
(3, 3) tubes. The electron doped (3, 3) has one excess electron per
12 C atoms. We note that the Fermi level intersects the bands at four
k points in the irreducible BZ. k is given in units of π/a.

effective mass and the other with a negative mass. With excess
electrons donated to the tube, the additional electrons will
raise the Fermi level so that it will cut these two bands at
different k vectors, with the smaller k1 corresponding to that
of the negative mass band, and a larger k2 corresponding to
the positive mass band. Adding more electrons will eventually
push the Fermi level past a van Hove singularity as the valley
due to another band starts filling up, and this contributes two
additional Fermi points at k3 and k4. In the limit of zero doping,
only k1 and k2 will cut the Fermi level and k1 = k2. Taking
into account all nesting q-vectors that connect these k-points
and only considering those such that the electronic bands have
slopes with opposite signs on either side of the q-vector (which
give diverging susceptibility in 1D systems), we can identify a
set of nesting vectors that will cause strong el–ph coupling for
the doped tube. These q-vectors are listed in table 1. Due to
the proliferation of q-vectors in the doped case, we expect that
the phonon anomalies will be much more complex than in the
pristine (3, 3) tube, in which the only two nesting q-vectors are
k2 − k1 = 0 and 2k1 = 2k2.
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3.2. Phonon dispersion

Phonon dispersions calculated by DFPT for the electron
doped (3, 3) tube are shown in figure 2. Figures 2(a)
and (b) are computed with two broadening widths of 0.2 and
0.025 eV. These Fermi surface smearings can be interpreted
as corresponding to effective temperatures of approximately
1096 K and 137 K, respectively. The results show clearly the
development of the phonon anomalies as the Fermi surface
sharpens. The most conspicuous feature is the softening at
q ≈ 0.76 π/a, which corresponds to the nesting vector q =
k1 + k3. For large Fermi surface broadening, the dispersion
curves are very similar to those of the (3, 3) pristine case [5],
except that the frequencies of some branches are lower in
frequency in the doped case. This is not unexpected since
the excess electrons occupy the anti-bonding states, and this
would typically weaken the carbon bonds [17]. The lattice
dynamics is only weakly affected by electron doping at high
temperatures. However, we see a lot more Kohn anomalies as
the Fermi surface sharpens. In particular, the phonon becomes
soft at about the same q = 0.76 π/a at a Gaussian width
of w = 0.025 eV. A similar sequence of softening was also
observed for the pristine (3, 3) tube as the Fermi surface
sharpens [5]. In particular, at w = 0.025 eV, the lattice is
definitively unstable for both the pristine and the doped tube.
As w = 0.025 eV corresponds to an effective temperature of
about 137 K, the TD of both the pristine and doped tube should
be above 137 K. So, at a first glance, the behavior is rather
similar for doped and pristine (3, 3). However, as shown below,
the softening is actually driven by different phonons coupled to
different electronic states.

In figure 3, the phonon dispersion curves of six different
symmetry classes for both the doped and pristine tubes are
plotted for a Fermi surface smearing of w = 0.025 eV. The
nesting q-vectors for the doped case are marked in the figure
for easy visualization. The solid lines correspond to the doped
tube, while the dashed lines are those for the pristine tube.
For symmetry class 1 (full symmetry), we found that the
pristine tube has no obvious Kohn anomalies, while the highest
frequency branch for the doped tube has a Kohn anomaly
corresponding to q = k1 + k3. This q = k1 + k3 is only present
in the doped tube, and therefore there is no corresponding
anomaly in the pristine tube. For symmetry class 2, the pristine
tube has anomalies at the zone center, which is due to the
nesting vector q = k2 − k1 = 0. The q = k2 − k1 anomaly
for the doped tube should be found at about q = 0.34, and
indeed we found a small dip there. The highest branch for
the doped tube has a deep and broad anomaly near the zone
center, which can be traced to a combination of the coupling
to k4 − k3 and k3 − k2 both having magnitudes less than 0.1
π/a. Because of hybridization with the highest branch, the
lowest branch is driven soft. This instability thus has its origin
in interband couplings which are not present in the pristine
tube. There are no observable anomalies in symmetry class
3 for either the doped or the pristine tube. For symmetry class
4, the pristine tube shows an instability at q = 2k1 = 2k2 [5].
The doped tubes show Kohn anomalies at 2k4 and 2k2. We note
that for the pristine tube k1 = k2, and when excess electrons
fill the band in the doped case the anomalies should split into

Figure 2. The phonon dispersions for the electron doped (3, 3) tube
computed with Gaussian broadening widths of (a) 0.2 eV and
(b) 0.025 eV. The latter one also includes the dispersion curves of the
unstable phonon branch for broadenings of 0.2 eV, 0.1 eV and
0.05 eV (thin solid, dashed and dashed–dotted lines, respectively). q
is given in units of π/a.

two dips, one at q = 2k1 ≈ 0.80 π/a for the negative mass
band, and the other at q = 2k2 ≈ 0.52 π/a (after folding
back to the irreducible BZ). We see that the anomalies due
to the q = 2k1 and q = 2k2 nestings become much weaker.
The anomaly at q = 2k2 is comparatively stronger than the
anomaly at q = 2k1 (which is hardly visible to the eye).
In addition, a new anomaly at q = 2k4 appears due to the
positive mass band. For symmetry class 5, the pristine tube
has no discernible dips while the doped tubes have dips that
can be traced to q = k4 − k1. We found the strongest phonon
softening for the doped tube in symmetry class 6. In the lowest
frequency branch, the phonon becomes soft near q = k1 + k3.
Kohn anomalies are also found at other q vectors. There is no
anomaly for the pristine tube.

Summarizing, we see that at w = 0.025 eV the phonons
of both the pristine and the doped tube are soft, but the Peierls
instabilities are driven by different nesting vectors. For the case
of the pristine tube, it is a q = 2k1 = 2k2 nesting that drives
the tube unstable (soft mode in symmetry class 4), but the same
nesting vectors are split and become weakened in the doped
tube, leading to Kohn anomalies rather than soft modes. In
the doped tube, there are interband couplings (cannot be found
in the pristine tube) that drive the tube to be soft (symmetry
classes 2 and 6). As far as we can tell, both the pristine and the
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Figure 3. The phonon dispersion curves of six different symmetry classes computed with a Fermi surface smearing of w = 0.025 eV. The
solid (dashed) lines correspond to the electron doped (pristine) tube. Nesting q-vectors are marked in some panels for easy reference. Groups
of nesting vectors with similar magnitudes are denoted by 1, 2, and 3, and correspond to (k4 − k3, k3 − k2), (2k3, k2 − k1, k2 + k4), and
(k4 − k1, 2k2), respectively.

doped tube should undergo Peierls transition well above the
superconducting temperature, but for a different type of el–ph
coupling.

3.3. Superconductivity

The strength of the el–ph interaction can be characterized by
the microscopic el–ph coupling parameters. The coupling
constant for a particular phonon mode labeled by (q, α) can
be written as [5]

λq,α = 2

h̄ N(EF)ωq,α

∑

k,n,n′
|gq,α

k+q,n′;k,n |2δ(εk,n)δ(εk+q,n′ ), (1)

where N(EF) is the density of states per spin at the Fermi level
and n, n′ are band indices. gq,α

k+q,n′;k,n denotes the el–ph matrix
element that couples the states |k, n〉 and |k + q, n′〉 by the
change in crystal lattice potential induced by the phonon mode
with wavevector q and mode number α.

In the present system, only a small set of q contributes to
the total el–ph coupling constant, so that we can write

λ = 1

Nq

∑

q,α

λq,α .

For the (3, 3) tube, only two q values at q = 0 and q = 2kF

contribute. For the electron doped (3, 3) tube, there are four

5



J. Phys.: Condens. Matter 21 (2009) 084206 K-P Bohnen et al

q

Figure 4. Comparison of λ(q) for the pristine and the electron doped
(3, 3) tube calculated with a broadening of 0.2 eV.

k-points at the Fermi level, and the corresponding set of
allowed q values is listed in table 1.

Figure 4 compares the λ(q) = ∑
α λqα for the pristine

and the electron doped (3, 3) tube. Equation (1) is evaluated by
replacing the δ-functions by Gaussians with a width of 0.2 eV,
which leads to peaks with finite width in λ(q). As expected,
λ(q) for the pristine tube shows only two peaks at q = 0 and
2kF, and integrates to a total value of 0.25. For the doped tube,
the four possible Fermi points lead to multiple q values, and
the λ(q) function is richer in structure. The integrated λ(q)

is 1.14, which is significantly larger than the value for the
pristine tube. To give a rough estimate of the superconducting
transition temperature Tc, we have solved the linearized gap
equations of the Eliashberg theory [18] for various values of
the effective electron–electron interaction constant μ∗ using
the spectral function

α2 F(ω) = ω

2Nq

∑

q,α

λq,αδ(ω − ωq,α).

The results are shown in table 2.
We note that the calculated value of λ actually depends on

the smearing of the Fermi surface (the effective temperature)
since the phonon frequency enters the formula explicitly.
Whenever there is phonon softening due to el–ph coupling,
the phonon frequency changes with temperature and there
is thus an explicit temperature dependence of λ. However,
the value of the effective phonon frequency ωln =
exp(1/(λNq)

∑
q,α λq,α ln ωq,α) also changes at the same time.

At the phonon softening temperature, λ diverges and ωln goes
to zero, but the value of Tc stays reasonably constant. In
table 2, we compare the values of Tc obtained at three different
effective temperatures, showing that the value of Tc remains
relatively stable, even though the values of λ and ωln change
individually.

Although these values of Tc for the doped tube are
qualitative, comparing them with the corresponding values
of Tc for the pristine tube (computed with exactly the
same procedure [5]) shows that superconductivity is indeed
enhanced by electron doping. The outcome is consistent
with the enhanced superconductivity behavior in graphite-
intercalated compounds and alkali–C60 compounds.

Table 2. Tc for the electron doped tube estimated by solving the
linearized gap equations of the Eliashberg theory for different values
of the effective electron–electron interaction constant μ∗, with
phonon frequencies and the el–ph coupling constants calculated
using different Gaussian broadenings. The Tc values we obtained are
quite independent of the Gaussian smearing used, as long as the
lattice remains stable.

w (eV)

0.05 0.1 0.2

μ∗ Tc (K) Tc (K) Tc (K)

0.0 64 65 69
0.04 51 51 54
0.08 41 41 43
0.10 38 37 38
0.12 35 34 35
0.14 32 30 31

4. Summary

Using density functional perturbation method, we calculated
the phonon dispersion for the small diameter (3, 3) tube doped
with electrons. The electron doping changes the Fermi points
and thus changes the el–ph coupling significantly. The el–
ph coupling drives the lattice to become unstable when the
Fermi surface sharpens (or equivalently when temperature is
lowered), and the Peierls transition temperature of the doped
tube and the undoped tube are rather similar. However,
the instability is driven by different phonons coupled to
different electronic states. We estimated the superconducting
temperature of the electron doped tube from the el–ph coupling
matrix elements, and we found that the Tc in the electron
doped tube is substantially higher than the pristine tube.
In other words, the Tc for superconductivity is enhanced
but the Peierls instability is not suppressed. The Peierls
temperature is still higher than the superconducting Tc by
a big margin. We note that superconducting behavior was
observed experimentally in 0.4 nm diameter nanotubes, but all
DFT calculations found that for an isolated tube the Peierls
transition temperature was higher than the superconducting
Tc. There are a few mechanisms that can suppress the Peierls
instability, and examples are suppression of 1D characteristics
due to coupling to host, tube–tube coupling [19], or electron–
electron interactions [14]. This calculation shows that the
intrinsic Peierls instability of the doped tube is no better
and no worse than that of the pristine tube. In addition,
experiments showed that a high concentration of Li can be
doped into the nanotube samples [16]. So electron doping
can be achieved by intercalating with Li, and this will
typically increase lateral interactions. Whatever mechanism
helps to suppress the Peierls instability in the clean tube
will probably be further enhanced by doping, while the Tc

is significantly increased. We thus think that doping these
0.4 nm tubes with electrons may be a way to increase the
superconducting temperature and to make the phenomenon
more robust.
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